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ABSTRACT

The paper contains a description of the Philips/RWTH 1998
HUB4 system which was build in a joint e�ort of Philips
Research Laboratories Aachen and Aachen University of
Technology. We will focus our discussion on recent im-
provements compared to the original 1997 HUB4 system
[Beyerlein+ 1998] and evaluate them on the HUB4'97 evalu-
ation data. The paper will deal with

1. a rough system overview, including slight modi�cations
in feature extraction, training and recognition

2. improvements obtained in audio stream segmentation
and segment clustering,

3. log-linear interpolation of \distance" language models,

4. and the integration of various acoustic and language
models via Discriminative Model Combination (DMC).

The performance of the described system is 23% (relative)
better than the performance of the 1997 Philips HUB4 sys-
tem. A word error rate of 17.9% was achieved on the 1997
HUB4 evaluation set, compared to 23.5% using the original
1997 system.

1. System Overview

1.1. Feature Extraction

In the acoustic front end, mel-frequency cepstral coe�-
cients were computed. A feature vector consists of 15
static features, 15 linear regression delta features, the
frame energy and its �rst- and second-order derivatives,
resulting in a 33-component feature vector. Three con-
secutive feature vectors were concatenated into a 99-
component vector to which a linear discriminant anal-
ysis (LDA) was applied. The gender-independent LDA
matrix has been estimated on the Broadcast News (BN)
training data. The �nal feature vector consisted of the
35 vector components with the largest eigenvalues. Vo-
cal tract normalization (VTN) [Haeb+ 1998] was applied
in recognition only. The hypothesized transcription re-
quired by VTN had been obtained from a �rst trigram
decoding without VTN. The cepstral features were nor-
malized per segment by cepstral mean subtraction and
by unit variance normalization.

1.2. Acoustic Training

We trained gender-dependent F-condition-independent
models on 96 hours of the acoustic BN training data.
The acoustic context was modeled by word-internal tri-
phone models, cross-word triphone models and word-
internal pentaphone models, where phrases of fre-
quently spoken words were treated as a single word
[Beyerlein+ 1998]. In the acoustic modelling we em-
ployed continuous mixtures of Laplacian densities with
a single, globally pooled deviation vector. Decision tree
clustering was applied for a robust within-word, cross-
word and pentaphone modeling.

1.3. Decoding

The decoder used a time-synchronous search algorithm
based on the concept of word-dependent tree copies
and integrates the trigram language-model constraints
in one single pass. The pruning strategy included a
look-ahead technique of the language model probabili-
ties [Ortmanns+ 1998]. Recently the search algorithm
was extended to allow a one-pass trigram cross-word tri-
phone decoding. The best sentence hypothesis is pro-
duced as well as a word lattice, both being used in the
subsequent decoding stages performing acoustic adap-
tation and DMC. Decoding was done in a number of
stages:

� First a trigram decoding using within-word triphone
models was carried out. The resulting hypothesized
word sequence was used for VTN and MLLR adap-
tation [Beyerlein+ 1998].

� Using the adapted models the trigram decoding was
repeated, producing lattices as output followed by
DMC [Beyerlein 1997].

2. Audio Stream Segmentation

When applying automatic speech recognition to Broad-
cast News data, a preliminary segmentation step is re-
quired. The goal of this pre-processing stage is to par-
tition the whole audio stream into reasonably short seg-
ments while discarding the non-linguistic portions. Sim-



ilar speaker segments are then clustered together, allow-
ing for robust adaptation.
The segmentation used in the 1998 evalution was as fol-
lows:

� Non-speech passages were eliminated using a Gaus-
sian Mixture Model (GMM) decoder that recognizes
speech and non-speech.

� Subsequently, the passages of speech are divided
at changes in speaker or background conditions us-
ing the Bayesian Information Criterion (BIC) as de-
scribed in [Chen+ 1998].

The segmentation used in the 1997 HUB4 evaluation
was based on using gender-dependent phone decoders
(PHONE-DEC.) with additional non-speech units (see
[Beyerlein+ 1998]).
For a comparison of these two segmentations with the
ideal NIST-PE segmentation, the following quantities
were measured:

� The amount of lost speech (misclassi�ed as noise).
� The percentage of frames belonging to the dominant
speaker in each segment, called the segment purity.

� The average segment length.
� The number of words that are cut at misplaced
segment boundaries.

approach speech purity avg. words

lost segment cut

(%) (%) length (%)

PHONE-DEC. 0.35 97.6 7.33s 0.29

GMM/BIC 0.26 97.7 18.86s 0.23

NIST-PE 0 100 15.87 0

Table 1: Comparison of segmentation approaches on

HUB4'97 evaluation test set

Table 1 summarizes the segmenter quality for the two
described approaches and for the o�cial NIST-PE seg-
mentation. The GMM+BIC segmenter results in seg-
ments of longer length, whereas its purity is similar to
that of the phone decoder.
Speaker clusters were created using a new bottom-up
segment clustering algorithm based on the symmetric
Kullback-Leibler distance and an additional neighbour-
hood penalty favouring clustering of neighbouring seg-
ments. Table 2 compares the simpli�ed nearest neigh-
bour clustering algorithm (SNN) used in the 1997 eval-
uation [Beyerlein+ 1998], with the new bottom-up ap-
proach and with an ideal clustering, where all segments

approach cluster WER before WER after
(segmentation purity VTN/MLLR VTN/MLLR

+clustering) (%) (%) (%)

PHONE-DEC.

+ SNN 73.6 23.7 22.6

GMM/BIC

+ bottom-up 89.1 23.4 21.0

NIST-PE

+ideal cl. 100 21.8 20.0

Table 2: Word error rates (%) on HUB4'97 evaluation

test set for di�erent segmentation and clustering meth-

ods using a one-pass trigram decoding

of one and the same speaker are clustered together. The
bottom-up clustering method resulted in a higher purity
than the nearest neighbour method, leading to reduced
word error rates after adaption.

3. Log-Linear Interpolation of Language

Models

3.1. Log-Linear interpolation

In [Klakow 1998] we suggested a new language model-
ing method called log-linear interpolation (LLI) which is
related to maximum entropy models but has all the ex-
ibility and the same number of free parameters as linear
interpolation. Log-Linear interpolation is de�ned by
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where pi(wjh) are the models to be combined and �i
the weights. Z�(h) is the normalization constant. This
model (1) can be interpreted as a linear interpolation of
scores. However, an additional score from the normal-
ization Z�(h) has to be added. We decided to optimize
the log-likelihood
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with respect to the �i. Here, f(hw) are the frequen-
cies of the M-gram 'hw' in the cross-validation set. In
table 3 the perplexities on the 1997 evaluation data are
summarized. All models in this table are trained on BN.
As a reference, the bigram, trigram and fourgram per-
plexity are also given. Firstly, a nice improvement can
be achieved by combining a bigram and a distance-1 bi-
gram using LLI. This model has a trigram-context but
the full trigram is still better. When the same experi-
ment is performed for a fourgram context, the situation
changes. Now the LLI-combined model based on the
trigram and distance-f0,1,2g bigrams is better than the



Model PP

Bigram ( =d0 ) 216
Trigram 150
Fourgram 144

Lin d0 + d1 204
LLI d0 + d1 175

Lin Tri +d0 +d1 +d2 146
LLI Tri +d0 +d1 +d2 136

Lin Tri +d0 . . . +d5 146
LLI Tri +d0 . . .+d5 130

Table 3: Perplexities for log-linear interpolation of lan-
guage models on the HUB4'97 evaluation set

full fourgram. Because of memory restrictions, we did
not train a backing-o� sevengram. However, building
the corresponding model following the pattern just de-
scribed gives an additional improvement. Note also, that
linear interpolation (denoted by 'Lin' in the table) as a
method of combination is not competitive.

3.2. Optimized Distance Models

We are left with the problem of improving the perfor-
mance of the models to be combined by LLI. This will
now be illustrated for the distance-2 bigram. We trained
initial distance-2 bigrams on BN. Those bigrams were
then used to train classes. Note that this gives classes
di�erent from the standard bigram classes. Based on
this classi�cation a distance-2 class bigram is trained.
In addition, a separate distance-2 bigram is constructed
from the North American News Text Corpus. All models
are combined by linear interpolation. This optimization
scheme was used to build all component models, which
were then combined by LLI. The �rst row in Table 4
gives the perplexity for the distance-2 bigram trained on
BN only and the second row the optimized distance-2 bi-
gram (denoted by 'Opt' in the table). The last two rows
of the table compare the LLI combination of the com-
ponent models trained on BN only with the optimized
component models. Perplexity is reduced by 15%.

Model PP

d2 Bigram BN 739
d2 Bigram Opt 661

LLI Tri +d0 +d1 +d2 BN 136
LLI Tri +d0 +d1 +d2 Opt 118

Table 4: Perplexities for log-linear interpolation with an
optimized distance-2 bigrammodel on the HUB4'97 eval-
uation set

4. DMC

Discriminative model combination [Beyerlein 1997] aims
at an optimal integration of all given (acoustic and lan-
guage) models into one log-linear posterior probability
distribution. Let us assume that we are given M di�er-
ent acoustic and language models, which are identi�ed
by numbers j = 1; : : : ;M . From model j we can com-
pute the posterior probability pj(kjx) of a hypothesized
class k given an observation x. These models are now
log-linearly combined into a distribution of the exponen-
tial family:

p
�
(kjx) = e

� logZ�(x)+
P

M

j=1
�j log pj(kjx) (3)

The coe�cients � = (�1; :::; �M )T can be interpreted as
weights of the models j within the model combination
(3). The value Z�(x) is a normalization constant. As
opposed to the maximum entropy approach, which leads
to a distribution of the same functional form, the coe�-
cients � are optimized with respect to the decision error
rate of the discriminant function (4):

log
p�(kjx)

p�(k0jx)
=

MX
j=1

�j log
pj(kjx)

pj(k0jx)
(4)

This approach is called \Discriminative Model Combi-
nation". If only one acoustic and one language model
are combined, DMC will optimize the so called language
weight (or language model factor). DMC allows for the
integration of any model into an optimal decoder, since
the weight �j of the model j within the combination de-
pends on its ability to provide information for correct
classi�cation.

4.1. DMC Training

So far DMC was used to optimize a large vocabulary con-
tinuous speech recognition (LVCSR) system at the model
level, although it could be applied to other problems in
pattern recognition due to its general formulation. In
LVCSR systems the spoken utterance is used as obser-
vation x and any hypothesized sentence can be regarded
as class k. For DMC training we are given a set of sen-
tences n = 1; : : : ; N . For each of the training sentences
we know the observation xn (spoken utterance) and the
correct class assigment kn (spoken word sequence). Us-
ing a preliminary decoding (if appropriate) we can de�ne
the set of rival classes k 6= kn and we can compute the
number of word errors of the rival class k with the help
of the Levenshtein distance L(kn; k). The model combi-
nation should then minimize the word error count E(�):

E(�) =

NX
n=1

L

�
kn; arg max

k 6=kn

�
log

p�(kjxn)

p�(knjxn)

��



on representative training data to assure optimality on
an independent test set. Since this optimization crite-
rion is not di�erentiable we approximate it in analogy to
the well-known MCE training by a smoothed word error
count:

EMWE(�) =

NX
n=1

X
k 6=kn

L(k; kn)S(k; n;�); (5)

where S(k; n;�) is a smoothed indicator function.
S(k; n;�) should be close to one if the classi�er (4) will
select hypothesis k and it should be close to zero if the
classi�er (4) will reject hypothesis k. One possible indi-
cator function with these properties is

S(k; n;�) =
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where � is a suitable constant. Optimization of
EMWE(�) with respect to � leads to an iterative gradi-
ent descent scheme. Another possible indicator function
with similar properties is the following 2-nd degree func-
tion:

S(k; n;�) =

8><
>:
�
g+B
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�2
; �B < g < A

0 ; g > A

0 ; g < �B

(7)

with

g = log
p
�
(kjxn)

p
�
(knjxn)

;

which gives a closed form matrix solution for �. The val-
ues A;B determine the form of the 2-nd degree function
and the set of hypotheses used for the training. Both
indicator functions lead to similar and reasonable DMC
coe�cients �j .

4.2. DMC in the HUB4 System

The training of the DMC coe�cients was carried out on
lattices of the HUB4 development data. The lattices,
which were obtained by the one-pass trigram decoding
(section 1.3.), were expanded and rescored using the fol-
lowing phrase-based acoustic (section 1.2.) and language
(section 3.) models:

� VTN/MLLR adapted word-internal triphones (wwad)

� VTN/MLLR adapted cross-word triphones (xwad)

� VTN/MLLR adapted word-internal 5-phones (5wwad)

� Unigram, Bigram, Trigram, d1 Bigram (tgset)

� Unigram, Bigram, Trigram, (tgset2)

� tgset, d2 Bigram (fgset).

The obtained scores were interpolated using DMC re-
sulting in the �nal system output. Table 5 gives an
overview over several decodings. In a �rst decoding it-

models M WER

xwad+tg (Baseline) 2 20.7

wwad+xwad+tg 3 20.2
wwad+xwad+5wwad+tg 4 19.5
wwad+xwad+5wwad+tgset 7 18.9
wwad+xwad+5wwad+fgset� 8 17.9

Table 5: Word error rates (%) for the log-linear combi-
nation of acoustic and language models using DMC on
the HUB4'97 evaluation data

eration a system capturing a phrase-based cross-word
pentaphone context and a trigram language model con-
text was built (wwad + xwad + 5wwad + tgset). This
system shows a word error rate of 18.9% compared to
the baseline error rate of 20.7%. In a second decoding
iteration (�), the adaptation of the acoustic and lan-
guage models was repeated based on the output of the
wwad+xwad+5wwad+ tgset system. The system was
extended to a fourgram context by adding the d2-Bigram
language model to the combined set of models. Note that
the weights of the log-linear language models interpola-
tion described in section 3. are similar to the weights ob-
tained from DMC ! The wwad+xwad+5wwad+fgset�

system showed an word error rate of 17.9% on the
HUB4'97 evaluation data. The log-linear interpolation
of acoustic and language models via DMC seems to
be more powerful than a simple voting at the level of
the recognized word sequence as is done with ROVER
[Fiscus 1997]. Table 6 shows the obtained results. For
the tests the NIST SCTK-1.2 ROVER software was used.

models DMC ROVER
(#models) (#systems)

wwad+tg 21.6 (2) - (1)
xwad+tg 20.7 (2) - (1)
wwad+xwad+tg 20.2 (3) 22.5 (2)
wwad+xwad+5wwad+tg 19.5 (4) 19.9 (3)
wwad+xwad+5wwad+tgset2 19.5 (6) 20.0 (9)
wwad+xwad+5wwad+tgset 18.9 (7) 20.2 (12)

Table 6: Comparism of ROVER and DMC on the
HUB4'97 evaluation data



5. SUMMARY

The key features of the Philips/RWTH HUB4 system were

described. Due to a better segmentation algorithm, the re-

duction of search errors using a one-pass trigram decoding,

improved language models and more acoustic and language

model training data the word error rate of the system could

be reduced from 23.5% to 20.7% on the HUB4'97 evalua-

tion data. With help of two DMC iterations, several adapted

acoustic and language models with longer context could be

exploited properly, which reduced the error rate from 20.7%

to 17.9%. In the 1998 HUB4 evaluation word error rates of

18.5% on 'File1' and of 16.8% on 'File2' were reported for the

described system.

References
[Beyerlein 1997] P. Beyerlein, \Discriminative Model Com-

bination", in Proc. 1997 IEEE ASRU Workshop, Santa
Barbara, pp. 238-245, Dec. 1997.

[Beyerlein+ 1998] P. Beyerlein, X. Aubert, R. Haeb-Umbach,
D. Klakow, M. Ullrich, A. Wendemuth and P. Wilcox,
\Automatic Transcription of English Broadcast News".
Proc. of the DARPA Broadcast News Transcription and
Understanding Workshop, Virginia, February 1998.

[Chen+ 1998] S.S. Chen, P.S. Gopalakrishnan, \Speaker,
Environment and Channel Change Detection and Clus-
tering via the Bayesian Information Criterion", in Proc.
DARPA Broadcast News Transcription and Understand-
ing Workshop, VA, Feb. 1998.

[Fiscus 1997] J. G. Fiscus, \A Post-Processing System to
Yield Reduced Word Error Rates: Recognizer Output
Voting Error Reduction (ROVER)" in Proc. 1997 IEEE
ASRUWorkshop, Santa Barbara, pp. 347-354, Dec. 1997.

[Haeb+ 1998] R. Haeb-Umbach, X. Aubert, P. Beyerlein,
D. Klakow, M. Ullrich, A. Wendemuth and P. Wilcox,
\Acoustic Modeling in the Philips Hub-4 Continuous-
Speech Recognition System". Proc. of the DARPABroad-
cast News Transcription and Understanding Workshop,
Virginia, February 1998.

[Klakow 1998] D. Klakow, \Log-Linear Interpolation of Lan-
guage Models", in Proc. ICSLP'98, 1695-1698, Sidney,
November 1998

[Ortmanns+ 1998] S. Ortmanns, A. Eiden, H. Ney, \Im-
proved Lexical Tree Search for Large Vocabulary Speech
Recognition", Proc. of ICASSP'98, pp. 817-820, Seattle,
May 1998.


